首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1817篇
  免费   261篇
  国内免费   81篇
化学   784篇
晶体学   8篇
力学   254篇
综合类   52篇
数学   538篇
物理学   523篇
  2024年   2篇
  2023年   17篇
  2022年   55篇
  2021年   94篇
  2020年   66篇
  2019年   55篇
  2018年   46篇
  2017年   90篇
  2016年   111篇
  2015年   58篇
  2014年   93篇
  2013年   136篇
  2012年   127篇
  2011年   119篇
  2010年   80篇
  2009年   108篇
  2008年   88篇
  2007年   107篇
  2006年   91篇
  2005年   84篇
  2004年   84篇
  2003年   69篇
  2002年   50篇
  2001年   43篇
  2000年   42篇
  1999年   35篇
  1998年   22篇
  1997年   18篇
  1996年   12篇
  1995年   18篇
  1994年   15篇
  1993年   20篇
  1992年   7篇
  1991年   16篇
  1990年   10篇
  1989年   7篇
  1988年   10篇
  1987年   14篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1959年   2篇
  1957年   2篇
排序方式: 共有2159条查询结果,搜索用时 15 毫秒
81.
82.
Retention behaviors of alkyl phosophates were studied on a series of ionic liquid gas chromatography columns. The selectivity of the IL columns for alkyl phosphates were compared with a 5% phenyl column as a route to evaluating the potential use of IL columns in the analysis of alkyl phosphates in petroleum samples in both one- and multi-dimensional GC. Most interestingly, we demonstrate for the first time the dependence of elution order on separation temperature for members of a homologous series of compounds. At low temperatures it was found that trihexyl phosphate eluted before trioctyl phosphate, while at higher temperatures this pattern was reversed.  相似文献   
83.
We have developed a two‐dimensional replica‐exchange method for the prediction of protein–ligand binding structures. The first dimension is the umbrella sampling along the reaction coordinate, which is the distance between a protein binding pocket and a ligand. The second dimension is the solute tempering, in which the interaction between a ligand and a protein and water is weakened. The second dimension is introduced to make a ligand follow the umbrella potential more easily and enhance the binding events, which should improve the sampling efficiency. As test cases, we applied our method to two protein‐ligand complex systems (MDM2 and HSP 90‐alpha). Starting from the configuration in which the protein and the ligand are far away from each other in each system, our method predicted the ligand binding structures in excellent agreement with the experimental data from Protein Data Bank much faster with the improved sampling efficiency than the replica‐exchange umbrella sampling method that we have previously developed. © 2013 Wiley Periodicals, Inc.  相似文献   
84.
Four implicit membrane models [IMM1, generalized Born (GB)‐surface area‐implicit membrane (GBSAIM), GB with a simple switching (GBSW), and heterogeneous dielectric GB (HDGB)] were tested for their ability to discriminate the native conformation of five membrane proteins from 450 decoys generated by the Rosetta‐Membrane program. The energy ranking of the native state and Z‐scores were used to assess the performance of the models. The effect of membrane thickness was examined and was found to be substantial. Quite satisfactory discrimination was achieved with the all‐atom IMM1 and GBSW models at 25.4 Å thickness and with the HDGB model at 28.5 Å thickness. The energy components by themselves were not discriminative. Both van der Waals and electrostatic interactions contributed to native state discrimination, to a different extent in each model. Computational efficiency of the models decreased in the order: extended‐atom IMM1 > all‐atom IMM1 > GBSAIM > GBSW > HDGB. These results encourage the further development and use of implicit membrane models for membrane protein structure prediction. © 2012 Wiley Periodicals, Inc.  相似文献   
85.
Water is an important component in living systems and deserves better understanding in chemistry and biology. However, due to the difficulty of investigating the water functions in protein structures, it is usually ignored in computational modeling, especially in the field of computer‐aided drug design. Here, using the potential of mean forces (PMFs) approach, we constructed a water PMF (wPMF) based on 3946 non‐redundant high resolution crystal structures. The extracted wPMF potential was first used to investigate the structure pattern of water and analyze the residue hydrophilicity. Then, the relationship between wPMF score and the B factor value of crystal waters was studied. It was found that wPMF agrees well with some previously reported experimental observations. In addition, the wPMF score was also tested in parallel with 3D‐RISM to measure the ability of retrieving experimentally observed waters, and showed comparable performance but with much less computational cost. In the end, we proposed a grid‐based clustering scheme together with a distance weighted wPMF score to further extend wPMF to predict the potential hydration sites of protein structure. From the test, this approach can predict the hydration site at the accuracy about 80% when the calculated score lower than ?4.0. It also allows the assessment of whether or not a given water molecule should be targeted for displacement in ligand design. Overall, the wPMF presented here provides an optional solution to many water related computational modeling problems, some of which can be highly valuable as part of a rational drug design strategy. © 2012 Wiley Periodicals, Inc.  相似文献   
86.
Understanding the interactions between proteins and ligands is critical for protein function annotations and drug discovery. We report a new sequence‐based template‐free predictor (TargetATPsite) to identify the Adenosine‐5′‐triphosphate (ATP) binding sites with machine‐learning approaches. Two steps are implemented in TargetATPsite: binding residues and pockets predictions, respectively. To predict the binding residues, a novel image sparse representation technique is proposed to encode residue evolution information treated as the input features. An ensemble classifier constructed based on support vector machines (SVM) from multiple random under‐samplings is used as the prediction model, which is effective for dealing with imbalance phenomenon between the positive and negative training samples. Compared with the existing ATP‐specific sequence‐based predictors, TargetATPsite is featured by the second step of possessing the capability of further identifying the binding pockets from the predicted binding residues through a spatial clustering algorithm. Experimental results on three benchmark datasets demonstrate the efficacy of TargetATPsite. © 2013 Wiley Periodicals, Inc.  相似文献   
87.
88.
In the present article, a dataset of 63 quinoxaline derivatives were taken for antimalarial activity and pharmacophore were developed. Atom based method was used to develop a three dimensional quantitative structure activity relationship (3D-QSAR) model. On comparison of all statistical parameters, model AHRRR23 was found to be the most effective and predictive QSAR model as it satisfied all statistical parameters of a good model. The model AHRRR23 showed an adequate R2 value for the training set 0.9446, good predictive power with Q2 of 0.6409, good F- value, low SD 0.1218 value and outstanding Pearson-R values and low RMSE 0.2779 values of the model. The docking studies also gives very good results with good RMSD values. 3D QSAR, docking and ADME studies exhibits that the developed model could be employed as a potential lead for further study as antimalarial drug.  相似文献   
89.
It is clear that the field of organocatalysis is continuously expanding during the last decades. With increasing computational capacity and new techniques, computational methods have provided a more economic approach to explore different chemical systems. This review offers a broad yet concise overview of current state-of-the-art studies that have employed novel strategies for catalyst design. The evolution of the all different theoretical approaches most commonly used within organocatalysis is discussed, from the traditional approach, manual-driven, to the most recent one, machine-driven.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号